
A Cypress tree grows in FNZ: End-to-end testing
automation framework considerations

Charles Bruderer Wise
Master of Software Development degree candidate

Victoria University of Wellington - Te Herenga Waka
Wellington, New Zealand
charles@charlesbwise.com

Abstract—Creating successful frameworks for automating
end-to-end test cases of web applications requires careful consid-
eration of maintenance, reliability, and reporting. While writing
high-quality end-to-end test cases is an important part of the
automation battle, how successful these tests are at coping with
changes to user interfaces and web application elements owes
more to the choice of testing framework than simply to good
behaviour-driven development (BDD) practices.

Seeking alternatives to their current in-house automation
testing framework based around the Selenium WebDriver,
financial services and technology company FNZ proposed a
proof of concept project for six master’s students to use
the Cypress JavaScript end-to-end testing framework to auto-
mate certain manual “misuse” tests, integrate the framework
into their existing continuous integration/continuous delivery
(CI/CD) pipelines, and potentially replace all or part of the
legacy testing framework with regression test suites written in
Cypress. The project ran for a five-sprint development cycle
and produced an automated misuse testing suite written in
Cypress and capable of being deployed through existing CI/CD
pipelines. Writing more complex integration and end-to-end
tests in Cypress proved to be difficult, however, owing to the
complexity, brittleness, and flakiness of existing tests within
the in-house framework. Additional Cypress limitations were
identified around programming language and browser support.
Finally, the in-house testing framework was critically assessed
and some suggestions for improvements put forward.

Index Terms—Automated Software Testing, FNZ, Selenium
WebDriver, Cypress, End-to-End Testing, Web Application Test-
ing

I. INTRODUCTION

Web applications are a ubiquitous part of daily financial
life. Whether banking, commerce, or securities, browser-
based platforms have become an essential part of transacting
personal and professional business. Considering the large role
that financial web applications play in the lives and fortunes
of their end-users and the regulatory scrutiny they inspire,
end-to-end testing of these web applications is crucial for
ensuring their ongoing stability and security [1]. End-to-end
testing is based on the scenario testing approach [2] [1],
where a scenario is a story that describes a particular way
the system might be used.

Given the complexity and importance of web application
end-to-end testing, organisations have been particularly keen
to automate these tests so as to reap the benefits of reusability,
repeatability, and efficiency [3]. Surveys of grey literature
have found that the best practices for developing high-quality
end-to-end tests are writing test code of high structural qual-
ity, making use of continuous integration/continuous delivery
(CI/CD) pipelines, engaging in good design patterns, and
crafting robust GUI element locators [4].

At FNZ, a financial services and technology company
that builds and provides web-based investment platforms,
testing automation is haphazardly implemented through an in-
house testing framework called Kratos that uses the Selenium
WebDriver1. The framework has several drawbacks, however,
such as high maintenance costs, tests with non-determinism
problems (more colloquially known as ”flakiness”), and
slowness due to build and compilation times and Selenium
WebDriver design limitations.

To address these issues, FNZ proposed a web testing au-
tomation proof of concept project for six master’s of software
development students at Victoria University of Wellington
- Te Herenga Waka using Cypress2, a newer JavaScript-
based end-to-end testing framework. Broadly, FNZ wanted
to answer the following questions about automation testing
within the company:

• Is Cypress suitable for automating certain manual “mis-
use” tests?

• Is Cypress capable of being run as part of a CI/CD
pipeline?

• Could Cypress be used to make regression testing a
regular, automated process?

To answer these questions, this paper introduces FNZ and
its development and automation testing landscape in Section
II, and then introduces the Cypress proof of concept project
and its outcomes in Section III. These outcomes are analysed
and discussed in Section IV before reflecting on the final
results in Section V.

II. INDUSTRY PLACEMENT OVERVIEW

A. FNZ

FNZ is a financial services and technology company that
creates and manages investor platforms for financial institu-
tions. The company was founded in 2003 by Adrian Durham
in Wellington, New Zealand [5]. Durham, who had been
working at Credit Suisse NZ as an analyst since 1996 [6],
recounts that he was inspired to start the company after his
parents emerged from a meeting with a financial planner with
an incomprehensible contract stipulating a high management
fee [7]. The company expanded into the United Kingdom
(UK) in 2005 [8], and even moved its headquarters to
Edinburgh [6].

Amidst the Great Financial Crisis, the company was sold
to the private equity group HIG Europe for NZ$34 million
in 2009, with the current management retaining a controlling

1https://www.selenium.dev/documentation/webdriver/
2https://www.cypress.io/

mailto:charles@charlesbwise.com
https://www.selenium.dev/documentation/webdriver/
https://www.cypress.io/

interest [9]. Expansion into Australia began during the same
year, followed by the Czech Republic in 2010, Singapore in
2015, China in 2016, and most recently the United States of
America (USA) in 2021 [8].

In 2018, Canada’s second-largest pension fund Caisse de
dépôt et placement du Québec (CDPQ) and the Anglo-
American private equity group Generation Investment Man-
agement LLP (Generation) purchased in partnership a ma-
jority stake in the company for £1.65 billion [10]. Further
investment followed from Temasek, a Singaporean state-
owned holding company, in 2020 [11], and a record US$1.4
billion investment from the Canada Pension Plan Investment
Board (CPP Investments) and Motive Partners in 2022 [12].

At present, the company has over US$1.5 trillion assets
under administration (AUM). Its customers include over 650
large financial institutions and over 8,000 wealth management
firms spanning 21 countries [13].

B. Service Platforms
FNZ offers four different propositions that allow customers

to target investors with different levels of wealth and financial
goals [14]:
Retail Direct - Known as D2C (direct-to-consumer), these

platforms allow clients to offer investments directly to
consumers who wish to make their own investment
decisions. Common tools include robo-advisers and risk
questionnaires.

Retail Advised - Aimed at retail financial services organisa-
tions who want to offer a platform to financial advisers,
who in turn will use the platform to manage their
customers’ portfolios and information. These customers
have read-only access to their accounts, and all transac-
tions are made by the advisers. Common tools include
reporting, client management, task automation, and fee
calculation.

Wealth - Platforms offered to discretionary wealth managers,
private banks, and stockbrokers who typically deal with
high net worth individuals who demand a more bespoke
portfolio tailored to achieve certain investment strate-
gies. Common tools include reporting and discretionary
portfolio model generation and maintenance.

Corporate - Allows companies to offer their employees
financial instruments and may incorporate other financial
benefits that an employer may provide to their employees
(e.g., insurance, vouchers, travel passes). The platform
provides access to all of these accounts in one place.
Common tools include viewing multiple accounts, fore-
casting, and bulk actions.

The core of the FNZ service platform is FNZ One, which
underpins almost all of the company’s propositions . FNZ One
consists of client, account, and portfolio management services
for a comprehensive range of asset and liability types, and
acts as a unified customer asset register [15]. It is also
designed to integrate with customers’ existing systems and
other FNZ platforms. Discretionary investment management
services are provided by the FNZ X-Hub service, which
makes it possible to adjust investment propositions for client-
specific constraints and preferences such as capital gains
taxation, sustainability, risk, and asset allocation.

FNZ makes ample use of the .NET framework. The stan-
dard codebase for FNZ One is called FNZ One X, and is

written in C# and Visual Basic for generating ASP.NET web
pages. The core One X codebase consists of typical global
investor management tools, with features for specific juris-
dictions and customers implemented as separate extensions.
All projects in One X share the same branch - there are no
distinct branches for customers. The goal of this architecture
decision is to reunite the disparate elements of the legacy FNZ
One codebase into a common code architecture that promotes
reusability and rigour.

The outcome of this decision is that an increasing number
of customer projects are implemented in the One X code-
base. Each of these projects is run by a customer delivery
team, which has its own developers, testers, and business
analysts [16]. Architecturally, the codebase is broken down
into globally useful core code, which is highly configurable
and changes infrequently. The core code does not know
about customer projects; each customer project has its own
bootstrapper/installer in the core code that references code
specific to jurisdictions (e.g. United Kingdom, Germany)
and customer-specific user interfaces (UIs) and application
programming interfaces (APIs). The bootstrapper in the core
code places all these references into a single container, which
becomes a deployment package specific to each project that
builds all relevant code and fetches all required libraries [16].

Fig. 1. A high-level diagram of the FNZ One X codebase architecture [16].

C. Test Automation
One of the challenges of the FNZ development landscape

is that there are numerous customer platforms that share a
lot of functionality, but potentially have completely different
UIs and slight processing variations [17]. For example, most
of FNZ’s Australian clients provide superannuation services
to their customers, but offer distinct web portals with client
branding and other customisations. While the One X codebase
is the future direction of customer on-boarding at FNZ, this
still leaves the question of how to efficiently and effectively
write tests for these differentiated platforms that have some
degree of shared functionality. The answer is Kratos, an in-
house framework for test automation written in C#.

Kratos is intended to maximise code reusability by splitting
the codebase up into five main levels [18]:

1) Kratos Core library - a separate repository of high-
level code consisting of generic functionality, base

classes, and interfaces. Key features include classes
for constructing randomised test data (e.g., names and
addresses) and generic UI navigation tasks such as
selecting an item from a drop-down menu.

2) Systems - generic implementations of code at a systems
level (e.g., One X, XHub, databases) including page
groups and objects, validators, test data builders, and
features representing key system functions (e.g., user
administration, deposits).

3) Platforms - similar to the Systems level, but pertaining
to specific clients. Systems level functionality can be
overridden at this level if needed.

4) Test Apps - contain specific tests as feature files and
their related step definitions/glue code [19]. It is also
possible to specify which environment tests should be
run in (e.g., testing, user acceptance).

5) Unit Tests - tests specific to the functionality of the
Kratos framework

The heart of Kratos is at the Platforms level, where
behaviour-driven development (BDD) [19], [20] tests exist
as feature files. BDD envisions writing acceptance tests [21]
as easily readable examples, allowing for feedback and col-
laboration from non-technical stakeholders such as business
analysts and testers. To accomplish this, feature files in Kratos
are written in Gherkin, which is human-readable syntax that
documents examples of behaviour for testing. Each feature
file is made up of a collection of scenarios, which define a
flow of events. Individual events are defined as steps, which
use familiar BDD keywords such as “given”, “when”, “then”,
etc., to define and document the action being tested in a clear
and easily understandable form. Test data is supplied in a
table within the file, and the scenario is run against each row
therein.

Feature: Prevent unauthenticated access to
restricted pages

An unauthenticated user should be prevented
from accessing a restricted page

Scenario: An unauthenticated user attempts to
access a restricted page

Given the user is not authenticated

When the user tries to access a
<restrictedPage>

Then the user should be redirected to an
<accessDeniedPage>

Examples:
| restrictedPage | accessDeniedPage |
| secrets.aspx | access-denied.aspx |

Fig. 2. An example of a BDD feature file demonstrating Gherkin syntax
with examples.

Each step in a BDD scenario is linked to a step definition,
which hold the actual code to execute the step event. In
Kratos, these step definitions are C# methods.

Kratos uses the the SpecFlow3 BDD framework, which is
an open source .NET port of Cucumber4. Kratos manages

3https://specflow.org/
4https://cucumber.io/

[When(@"the user tries to access a (.*)")]
public void WhenTheUserTriesToAccessA(

string restrictedPage)
{
PageObject.GoTo(restrictedPage);

}

Fig. 3. A pseudo-code example of a step definition underpinning the
”When” statement from Fig. 2.

tests using SpecFlow hooks, which define events to run
before and after scenarios and steps such as obtaining login
credentials. Kratos manages all data relating to environments
in its own dedicated database, which are determined by
environment code per client at the Test App level.

For steps that involve assertions (the ”Then” step) against
web elements, Kratos makes use of the Selenium WebDriver.
Selenium is an open source testing framework that was first
released in 2004. The WebDriver component was released
in 2008, and makes use of a browser-dependent binary file
to implement native automation support. Selenium identifies
web elements using a locator strategy, which can look for
elements using attributes ids, CSS (Cascading Style Sheets)
selectors, or XPath (XML Path Language) queries [22].
Database assertions are performed using a database validator
native to Kratos.

Fig. 4. A high-level summary of the different generic methods, interfaces,
objects, features, and validators used to prepare, execute, and assert BDD
test cases in Kratos [17].

From an infrastructure perspective, Kratos is the source
control part of a full testing automation framework. The
Kratos codebase is a git repository hosted by Microsoft
Azure DevOps under the auspices of the Global Automation
team. Although it technically has all the BDD feature files
needed to run tests, test case management and reporting
is managed through the Atlassian issue tracking platform
Jira. Tests are explained in Jira as both manual instructions
and copies of the BDD feature files. Continuous integration
and deployment (CI/CD) of tests as part of test sets or
plans is handled by TeamCity5, which is a JetBrains CI/CD
product that uses build agents for pipelines. As most FNZ
codebases are still running .NET 4.7.2 or less, the build agents
are all Microsoft Windows Server virtual machines. Within
TeamCity, all clients live under the ”KratosForAll” project
and have environment sub-projects that run the following
build steps during each deployment:

5https://www.jetbrains.com/teamcity/

https://specflow.org/
https://cucumber.io/
https://www.jetbrains.com/teamcity/

1) Pull the latest commits from Kratos
2) Download all BDD test case features from Jira using the

in-house JiraExtractor tool
3) Re-build the Kratos code
4) Run the tests

During the development process, analyst developers work on
the Kratos codebase and merge reviewed pull requests to the
remote repository on Azure DevOps. For each deployment,
TeamCity then selects a suitable build agent based on the
environment sub-project configuration and uses that virtual
machine to complete all the steps above. Test statuses are
reported back to a parent Jira issue and within each build
in TeamCity. Test failures are reported in TeamCity through
GUI screen-shots, which are called artefacts, and in a verbose
build log that includes stack traces.

D. Unit and Misuse Testing
FNZ promotes unit test creation as part of the development

process. Unit tests accompany code in specific codebases,
with an expectation of a minimum of 10 percent code cov-
erage. Analyst developer on-boarding and training includes a
substantial unit testing module consisting of lecture material
as well as a complete training environment with senior
oversight. Unit test classes generally extend from a specific
base class of the code under test (CUT) and rely on the .NET
Framework tool xUnit6. Test methods begin by declaring the
CUT instance and instantiating an instance of it, potentially
with mocked or stubbed data using Rhino Mocks7, and
invoking it to produce a result. Next, one writes observations
that cover specific testing scenarios, which are methods that
validate expected results against the actual results object, and
continues until all scenarios and their observations cover all
aspects of the CUT [23].

Part of the acceptance criteria for platform releases is
misuse testing, which depending on the platform and/or client
may or may not be partially automated through Kratos.
Misuse testing is specifically about identifying security issues
by sending unauthorised or inappropriate requests to certain
platform web pages and forms and verifying that they are
correctly handled. This can take the form of user session
destruction, re-direction to ”access denied” pages, or other
warning messages. For example, platforms should prevent
end-users from successfully uploading files with unauthorised
extensions such as .exe, as this could result in the execution
of unauthorised code within the back-end.

On some platforms, certain misuse test cases have already
been automated as test suites within Kratos written as BDD
feature files with corresponding step definitions. In many
cases, though, the majority of misuse tests must be run
manually by analyst testers within a project using security
testing tools such as Burp Suite8 to send malformed requests
to lists of platform URIs. This is an inefficient and time-
consuming process that significantly slows down releases
and suffers from a lack of consistency as far as what is
being tested and how. The FNZ Information Security team
have attempted to document the manual steps to run each
test within internal wikis and Jira [24], but there are still
significant drawbacks to this approach.

6https://xunit.net/
7https://hibernatingrhinos.com/oss/rhino-mocks
8https://portswigger.net/burp

III. INDUSTRY PROJECT

FNZ employed six master’s of software development stu-
dents from Victoria University of Wellington - Te Herenga
Waka as intern analyst developers to produce a proof of
concept for performing web application GUI testing using
the Cypress9 framework. FNZ’s Head of Development for
Australia and New Zealand oversaw the project, which lasted
for 12 weeks. The internship fulfilled the industry placement
requirement of the software engineering (SWEN) 589 course
”Industry Research and Development Project”, in which all
six students were enrolled.

A. Cypress

Cypress is a JavaScript end-to-end testing framework
following a client-server architecture that implements tests
inside a browser [22]. Its goal is to make it easy to write
unit, integration, and end-to-end tests for web applications
by providing a simpler alternative to more complex testing
frameworks [26], and is predicated on the idea that aversion
to testing is caused by the limitations of previous solutions
such as Selenium [25]. Cypress consists of a locally installed
open source test runner that includes Mocha10 BDD syntax,
the Chai11 assertions library, and an Electron12 browser based
on Chromium13, and a commercial dashboard [27]. The test
runner can be executed as a GUI or headlessly via the
command line.

Cypress differs from Selenium in several key ways. Firstly,
Cypress tests are written in JavaScript, and the framework’s
functionality can be extended using plugins that interact
with the Cypress API, whereas Selenium supports all major
development languages [26]. While Selenium’s WebDriver
interacts with the Document Object Model (DOM) using
JSON messages over HTTP (now the W3C WebDriver stan-
dard) [22] and requires a different driver for each browser
type, Cypress uses a custom universal driver that works
directly in the browser, meaning it can intercept commands
directly [26]. However, unlike Selenium, Cypress currently
lacks support for WebKit14-based browsers such as Safari and
cannot interact with multiple browser tabs [26].

B. Project Organisation and Implementation

The main goals of the Cypress proof of concept project
were:

• Address problems with the Kratos test automation
framework, specifically:
– Difficulty of maintenance due to size and complexity
– Increasing compilation times with the addition of

more tests
– Slow performance of the Selenium WebDriver

• Automate manual misuse testing
• Integrate Cypress into TeamCity CI/CD processes
• Automate full regression testing
The project group formed a self-organising team with a

scrum master and agreed to treat the FNZ project overseer

9https://www.cypress.io/
10https://mochajs.org/
11https://www.chaijs.com/
12https://www.electronjs.org/
13https://www.chromium.org/Home/
14https://webkit.org/

https://xunit.net/
https://hibernatingrhinos.com/oss/rhino-mocks
https://portswigger.net/burp
https://www.cypress.io/
https://mochajs.org/
https://www.chaijs.com/
https://www.electronjs.org/
https://www.chromium.org/Home/
https://webkit.org/

as a product owner. FNZ provided each team member with a
laptop and a local virtual machine for development, and set up
a git repository for the project within Azure DevOps. At the
request of the team, the product owner modified the repository
to prevent commits being made directly to the master branch
and require pull request reviews prior to merging. The team
also agreed to use Atlassian Trello as a Kanban board and
sprint planning tool.

The team held daily stand-ups via Microsoft Teams or
in-person at the FNZ offices in Wellington, New Zealand,
and scheduled regular afternoon meetings with the product
owner on Tuesday and Friday. Based on this schedule, the
team agreed to end sprints on Tuesday morning so that
working demonstrations could be presented at the meeting
in the afternoon. Of the five sprints the team did, sprint
retrospectives were completed for all but the fourth one,
which was not done due to time pressure to complete work
on TeamCity integration.

Sprint Overview
1 Project kick-off, focus on reusability by creating custom

fixture files for clients, start writing misuse tests in Cypress
for a client platform in the user acceptance testing (UAT)
environment

2 Finish implementing all unit tests in Cypress, exploration
of using Cucumber feature files in Gherkin syntax, start
writing some simple end-to-end tests in Cypress

3 Key decision to develop using feature files with step defini-
tions going forward, addition of a second client platform in
a different environment, shift away from fixtures towards
custom configurations on a per-client basis

4 Clean-up feature file descriptions and language, continue
trying to implement certain end-to-end tests in Cypress,
focus on reusability of step definitions between clients

5 Implement all misuse tests for the FNZ One X platform,
create PowerShell wrapper for TeamCity usage, create
TeamCity project and write build steps

Fig. 5. A table summarising the project sprints.

The team faced some challenges initially around installing
Cypress on the provided virtual machines due to proxy
settings in place within FNZ. The solution was to use
a ZIP archive copy of Cypress version 9.5.4 as the
installation source by setting the environment variable
CYPRESS_INSTALL_BINARY to its location. and to
register FNZ’s custom Node.js repository with the Node.js
package manager (npm) so that other dependencies could
be installed. Although Cypress is available as a Node.js
package, it was not possible to directly install it from
the FNZ Node.js repository because the package is just
a wrapper around a script that attempts to download the
file from an external location, which was prevented by the
proxy settings. Once installed, Cypress was invoked from
the command line in either a GUI or in headless mode.

GUI:
npx cypress open

Headless:
npx cypress run

During the first two sprints, the team focused on getting
acquainted with Cypress by writing misuse tests exclusively

as JavaScript files for a single client platform. Cypress
fixtures were used to store static data such as environment
URLs and login credentials in JSON format. Some members
of the team also started implementing simple integration tests
after being urged to do so by the product owner, and other
team members started looking at creating tests as Cucumber
feature files written in Gherkin syntax using the cypress-
cucumber-preprocessor15 Node.js package.

During the third sprint, the rest of the team converted their
existing Cypress tests into Cucumber feature files referencing
JavaScript step definitions. The team also considered whether
it made sense to fully embrace this practice for future tests.
One consideration was whether it was possible to separate
out the ”Examples” data from the feature file for greater
reusability, but it was discovered that this is strongly dis-
couraged by BDD practitioners, as it defeats the purpose
of the feature files serving as complete BDD test cases
[28]. After an extraordinary meeting, the team concluded
that Cucumber feature files with step definitions were better
from a testing readability and documentation standpoint, and
could be designed so that step definitions were reusable across
multiple client platforms.

Having decided to proceed using Cucumber feature files,
the fourth sprint involved fixing reusability issues with step
definitions after adding support for misuse testing of a sec-
ond client platform. The biggest issue was how to provide
context for Cypress to run tests on different platforms with
different URLs, login credentials, and GUI differences. The
solution was to convert the existing JSON fixture files into
client-specific Cypress JSON configuration files16 , making it
possible to change important parameters like the base URL
for page navigation. Another challenge of working with a
second client was that some common steps (see Fig. 6) such
as authenticating via POST request stopped working due to
technical differences, requiring a code refactor to get them
working across both platforms.

For the fifth sprint, the team divided into two smaller
groups, with one group working on adding misuse test
support for the FNZ One X platform, and the other group
working on the TeamCity integration. The latter faced numer-
ous challenges around how to configure the Cypress project
within TeamCity, eventually settling on an environment-based
sub-project structure similar to Kratos. To simplify the exe-
cution steps in the TeamCity environment, the command line
invocations for each client and environment were wrapped
in a PowerShell script (see Fig. 6), which took significant
inspiration from the FNZ One X build script method. Ad-
ditionally, none of the existing TeamCity build agents had
PowerShell Core or Node.js installed, requiring a manual
installation process on multiple Windows virtual machines
to make agents available for running tests.

C. Outcomes

At the conclusion of the fifth sprint, the project had
achieved the following milestones:

• Automation of all misuse test cases in Cypress across
three different client platforms

15https://github.com/badeball/cypress-cucumber-preprocessor
16Cypress 10.0 removed support for JSON configuration files

https://github.com/badeball/cypress-cucumber-preprocessor

Fig. 6. The FNZ One X Cypress tests directory structure. Within TeamCity,
the testing suite build is invoked via PowerShell:
.\teamcity_run.ps1 setup
This sets CYPRESS_INSTALL_BINARY to the included cypress.zip
archive. Test execution runs Cypress headlessly and uses the following argu-
ments, which in this case are mapped to the onex_env.json configuration
file and the misuse suite:
.\teamcity_run.ps1 run onex misuse env
During test runs, artefacts are stored in the screenshots directory and
made available through the TeamCity dashboard.

• Creation of some proof of concept Cypress integration
and end-to-end tests

• Integration of the misuse test pack into TeamCity for
each client environment

Within a week of finishing the final sprint, the team pre-
sented the project to an audience of FNZ developers, testers,
and Global Automation team members. The overall reception
of the project was largely positive, with particular interest
shown in the advantages in using Cypress for web application
GUI testing relative to Selenium and the wider availability of
Cypress as a testing suite relative to an in-house framework
such as Kratos. Concerns were raised about Cypress’s lack of
support for WebKit-based browsers and multiple tabs, as well
as the non-trivial task of writing full integration and end-to-
end tests in Cypress. The product owner articulated a vision
of potentially using Cypress in conjunction with a separate
test database instance for each client platform, allowing for
smaller unit tests and integration tests to replace the complex
end-to-end tests typical in Kratos, but acknowledged that the
project would most likely complement Kratos going forward
instead of seeking to completely replace it. It is expected
that ongoing work on the project will be directed by interest
from client teams in adopting it for specific testing goals and
will eventually be placed under the control of the Global
Automation team.

Referring to the original project goals, the team presented
a testing framework proof of concept that addressed a number
of issues presented by the existing Kratos testing framework,
specifically ease of maintenance due to the nature of the
misuse test cases and unencumbered by compilation concerns
due to JavaScript being an interpreted language. As a result,
the Cypress browser tests were much faster to complete than

their comparable Kratos integration tests and demonstrated
less flakiness overall. The project did reveal that replacing
complex integration and end-to-end tests using Cypress would
not be a trivial task, as the team’s attempts to write these tests
often encountered obstacles such as needing to prepare com-
plex objects to fulfill the existing assertions using a different
language than the original code. Therefore, the project did
not achieve the goal of automating regression testing of client
platforms. However, the project did satisfactorily demonstrate
that misuse testing could be successfully automated within
a resilient framework with reusability across multiple client
platforms, and that these test packs could be successfully run
via TeamCity build agents as part of a CI/CD pipeline.

IV. ANALYSIS AND DISCUSSION

A. Testing Automation

The benefits of automating manual tests such as the FNZ
misuse cases are well documented in academic literature.
In their systematic literature review (SLR) of the benefits
and limitations of automated software testing, Rafi et al. [3]
reported that their practitioner survey found the main benefits
thereof to be reusability, repeatability, and effort saved, par-
ticularly in regards to repeated regression testing. The latter
point was also cited by Ricca et al. [29] as a key benefit of
adopting test automation, as well as identifying bugs during
early stages of development. While the FNZ misuse testing
by itself cannot be classified as a full regression test suite, it is
nevertheless treated as such by the business and is part of the
acceptance criteria for the new release of a client platform.
This points to another clear advantage of automated testing,
which is the ability to scale. As Badal and Grünler [30]
note, paying employees to manually test something repeatedly
is not only expensive but a waste of resources. Prior to
beginning the Cypress proof of concept project, the team
was asked to assist with manual misuse testing of a client
platform in a UAT platform. The process took almost a week
to complete and was frustrating to implement given the sheer
amount of repetition involved. A fully automated misuse
testing pack initiated through a CI/CD pipeline would have
taken approximately 30-60 minutes to run, and any follow-
up tasks or bugs could have been easily distributed to the
existing team to address well within the expected delivery
time-frame.

In the context of direct web application GUI testing,
aspects of the Cypress framework also contradict some of
the limitations cited by Rafi et al. [3], specifically the high
initial cost involved in designing test cases. Through the use
of Cucumber feature files, the Cypress framework would be
instantly recognizable to analyst testers at FNZ given that the
Kratos framework also uses feature files via the .NET port of
Cucumber SpecFlow. Additionally, prospective employees of
FNZ may also already have experience with using Cypress
and/or Cucumber to write tests, and the interpreted nature
of JavaScript as a programming language suggests a lower
barrier to entry from a development perspective compared
to the object-oriented knowledge required to work with C#.
However, further adoption of Cypress beyond misuse testing
starts to stray into high initial cost territory, specifically
because Cypress supports only JavaScript, whereas FNZ is
heavily reliant on .NET. Although it is a direct competitor

with the Selenium WebDriver, FNZ’s C# implementation
thereof cannot be swapped out for Cypress. Therefore, a
serious commitment to using Cypress would also mean a
serious commitment to refactoring end-to-end tests present in
Kratos as well as browser automation and page object code
in Kratos Core.

B. Kratos Considerations
In favour of a Kratos refactor is the argument that the

framework has too many end-to-end tests. This stands in
opposition to the test automation pyramid model (see Fig.
7) proposed by Cohn [31], whereby automated UI tests
should be done as little as possible because they are prone to
breakage with small changes, expensive to develop and write,
and are time-consuming to run. Fowler [32] also points out
that UI end-to-end tests are more prone to non-determinism
problems, more colloquially known as ”flakiness”.

Fig. 7. The test automation pyramid model indicating the relative amount
of each type of testing that should be done [31].

Test flakiness is a concern in Kratos for two reasons.
Firstly, the complexity of Kratos tests means that identifying
the root cause of the issue is a time-consuming task. Secondly,
the Selenium WebDriver tends towards flakiness because of
its dependence on waits due to its design [22]. It is no surprise
that these shortcomings are some of the key challenges in
GUI test automation identified by Nass et al. [33], specifically
that application changes can break test execution and a lack
of synchronisation between the test and the SUT may cause
assertions to fail. Referring back to the test automation
pyramid (see Fig. 7), Cohn [31] argues that the general
solution is to cement a testing automation framework on a
broad base of simple unit tests. As discussed in Section II-D,
FNZ already has an established culture of writing unit tests,
however, these tests are not part of the Kratos framework,
and it is not clear whether they are automated in some form
already. Creating automated test packs of unit tests for clients
would help to balance out the ratio of automated test types.
More specifically, Ricca et al. [29] recommend generating
more robust XPath locators using the Robula+ algorithm,
which carefully combines XPath predicates to creator short,
compact locators with low fragility. This solution could be
adopted directly into the Kratos Core codebase for existing
By.XPath() methods. Another finding regarding Selenium
waits that may improve existing Kratos performance comes
from Presler-Marshall et al. [34], who analysed known Se-
lenium test failures in an academic CI/CD test pipeline and

determined that tests with Explicit Waits (where Selenium
tells the driver to wait for a certain amount of time or until a
condition is satisfied) were more flaky, but that the flakiness
itself was more predictable. Ensuring a preference for Explicit
Waits in Kratos Core could also be more easily adopted than
a wholesale refactor.

Another suggestion from the literature for maintaining end-
to-end test cases is the usage of the page object pattern [1]. In
practice, a web page is broken down into a series of objects so
that the page features are encapsulated into methods, making
the page objects a bridge between the actual UI and the test
code. The result is that web page elements can now be easily
referenced, called, reused, or asserted against within a test.
If the UI is updated, then refactoring only needs to concern
itself with those elements that have changed. Kratos already
makes ample use of the page object pattern to handle web
elements.

Fig. 8. A diagram illustrating the reusability benefits of the page object
pattern for end-to-end testing [1].

Beyond the Kratos codebase, improvements could also be
made to the environments in which it compiles and runs.
Most of the TeamCity build agents appear to be running
Windows Server 2012, which is approaching end-of-life and
requires a Microsoft license. As June 2021, Kratos is running
on .NET framework 4.7.2 [35], which does not yet have
native support for compilation on GNU/Linux. Updating
the codebase to the .NET 5.0 (formerly .NET Core) would
make it possible to build and compile Kratos on specialised
Docker containers running lightweight GNU/Linux operating
systems, which would improve build and compile times and
lower the infrastructure costs of maintaining TeamCity build
agents. Additionally, the Selenium data gathered by Presler-
Marshall et al. [34] used three different hardware types for
testing and found that the Windows system took up to seven
times longer to build and compile, and that Windows had the
worst Selenium test performance overall in the form of long
run-times, flakiness, or both.

C. Cypress Limitations
As previously mentioned, Cypress lacks support for We-

bKit browsers and multiple browser tabs [26]. The former
is a concern for FNZ, as it is expected that client platforms
will be tested on WebKit browsers such as Safari. However,
FNZ currently does not perform any automated testing of
WebKit browsers and instead relies on manual checks, so this
particular limitation may not be a significant factor. Kratos
does not include the Selenium Safari driver at this time.

Both Selenium and Cypress are also criticised by Moon et
al. [25] for requiring additional time and maintenance to run

tests in parallel execution, which is a key factor in automated
test scalability. As both Selenium and Cypress use a server-
client model for test management, multiple instances of these
must be configured and ready, and so they conclude that the
costs would preclude either framework from being practical
in an industry setting. Moon et al. [25] offer an alternative
approach that argues strongly in favour of deploying native
implementations of testing frameworks to match the code
being tested so that difficult context switches are not required.
By this logic, front-end web application tests should be
written in JavaScript without requiring any specialised client
libraries. This particular solution is actually indirectly cited
by Fowler [32] when discussing what a well-balanced test
portfolio should look like. At its most basic, this solution
is that like should test like - a web application GUI that
makes significant use of JavaScript should use a JavaScript
unit testing solution, whereas complex business rules written
in C# should avoid calling a browser and instead test the
components directly using a C# testing suite. While this
line of thinking qualifies Cypress as an appropriate testing
suite for misuse testing, it excludes it from most further unit
and end-to-end testing because this would require a context
switch to C#. The Selenium WebDriver, in contrast, does
support most major languages, including JavaScript and C#.
An alternative framework that also includes JavaScript and
.NET support is Playwright17, a Node.js library created by
Microsoft that has full cross-browser support [22], which may
be of interest for replacing Selenium with a more performant
browser automation suite.

Finally, Cypress is a third-party tool developed outside of
FNZ, which means that its development cycle and decisions
are beyond the control of the company. While third-party
status does mean that prospective employees may already
possess experience with Cypress prior to being hired, and the
learning curve for Kratos as an in-house testing framework
is steep, Kratos has also grown and evolved over the years as
FNZ’s business and testing automation needs have dictated.
As noted earlier, the Cypress proof of concept project used
version 9.5.4. However, at the beginning of June 2022, the
Cypress team released Cypress 10.0, which departs from the
previous Cypress structure and design in several significant
ways that would automatically break the entire proof of
concept were Cypress to be updated to the latest version
[36]. This means that technically the project is no longer
fit for purpose due to external changes beyond the control of
the company, which is a serious concern from a stability and
resourcing perspective. Therefore, it is important to consider
the development priorities and cadences of any third-party
tooling being used for testing automation to ensure it aligns
with the those of the business in question.

V. CONCLUSION

Automation testing frameworks should aspire to support
best practices of end-to-end testing. Fundamentally, auto-
mated end-to-end testing should be reusable, repeatable, and
efficient. To counteract the tendency towards brittleness, long
run-times, and high maintenance costs of automated end-to-
end tests, several considerations must be given when selecting
a test tool.

17https://playwright.dev/

FNZ’s internal automation testing framework Selenium
WebDriver makes good use of recommendations such as
preferring Explicit Wait and improving test maintenance by
relying on the page object model to manage web elements.
Selenium also supports both JavaScript and C#, making it a
suitable testing suite by the principle of like testing like to re-
duce context switching and third-party library dependencies.
However, the client-server driver design of the Selenium Web-
Driver may contribute to a loss of synchronisation between
the CUT and the test code, and a lack of robust locators
used by the XPath may cause easy test breakage with even
minor UI updates due to a lack of resiliency. Additionally
this imposes high costs for automation upfront as well as
ongoing technical debt that has led to difficulty consistently
maintaining testing suites for some client platforms.

As part of their testing automation proof of concept project,
the team found several advantages to using the Cypress
testing framework over Selenium, specifically the ease of
writing and maintaining tests and its suitability for automating
misuse tests that were being performed manually. Due to
being written in JavaScript, Cypress tests executed faster
since they only needed to be interpreted, not compiled.
Cypress’s direct browser driving also reduced amount of
flakiness in tests thanks to its improved design over Selenium
with better support for synchronisation between the CUT and
the test code itself. Cypress was also easy to integrate into
the existing TeamCity CI/CD pathways for client platforms
in specific environments. The framework also proved capable
of handling some simple integration tests, but struggled with
larger, more complex end-to-end tests due to a lack of direct
.NET support. Other potential business concerns include a
lack of support for WebKit browsers and testing in multiple
browser tabs. Furthermore, the recent release of Cypress 10.0
illustrates the drawbacks of relying on third-party tools for
major frameworks, as this release involved a major refactor
of the code that broke the project implementation described
in this paper.

Overall, the Cypress testing framework may be a suitable
companion to the internal Kratos framework, but will cer-
tainly not replace it wholesale due to a lack of support for
.NET, WebKit browsers, and multiple browser tabs. However,
the prevalence of expensive end-to-end test in the Kratos
framework suggests that it should be refactored towards
smaller unit and integration tests in line with the test automa-
tion pyramid model. Despite performance concerns around
compilation and build times, there is evidence to suggest that
moving Kratos to .NET 5 would bring substantial benefits in
this area, specifically because it would allow the framework
to be compiled and run on GNU/Linux Docker containers,
saving both time and money. Finally, the alternative testing
framework Playwright from Microsoft may prove to be a
more suitable Selenium successor given native support for
.NET and all major browsers.

REFERENCES

[1] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Approaches and tools
for automated end-to-end web testing,” in Advances in Computers, vol.
101, A. M. Memon Ed., Cambridge, MA, USA: Academic, 2016, pp.
193-237, doi: 10.1016/bs.adcom.2015.11.007.

[2] I. Sommerville, ”Software testing,” in Software Engineering. Harlow,
U.K.: Pearson Education Limited, 2016, pp. 226-254.

https://playwright.dev/
https://doi.org/10.1016/bs.adcom.2015.11.007

[3] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mäntylä, “Benefits
and limitations of automated software testing: Systematic literature
review and practitioner survey,” in 2012 7th Int. Workshop Automat.
Softw. Test (AST). IEEE, Jun. 2012. doi: 10.1109/iwast.2012.6228988.

[4] F. Ricca and A. Stocco, “Web test automation: insights from the grey
literature,” in 47th Int. Conf. Current Trends Theory Pract. Comput.
Sci., in SOFSEM 2021: Theory and Practice of Computer Science,
vol. 12607, LNCS, Jan. 2021, pp. 472-485, doi: 10.1007/978-3-030-
67731-2 35.

[5] R. Stock. “FNZ was founded by Kiwi Adrian Durham in 2003.
Now it’s worth $3.35 billion.” Stuff.co.nz, 2018. [Online]. Available:
https://www.stuff.co.nz/business/money/107727511/fnz-was-founded-
by-kiwi-adrian-durham-in-2003-now-its-worth-335-billion [Accessed
May 30, 2022].

[6] I. Martin. “Face to Face: Adrian Durham, FNZ.” Citywire, 2009. [On-
line]. Available: https://citywire.com/new-model-adviser/news/face-to-
face-adrian-durham-fnz/a353963 [Accessed May 30, 2022].

[7] FNZ. FNZ Overview by Adrian Durham, Founder & Group CEO. (Aug
26, 2021). Accessed: May 30, 2022. [Unpublished Online Video].

[8] FNZ. FNZ Timeline. (Aug. 26, 2021). Accessed: May 30, 2022.
[Unpublished Online Video].

[9] “FNZ goes for $34 million.” Good Returns, 2009. [Online].
Available: https://www.goodreturns.co.nz/article/976494790/fnz-goes-
for-34-million.html [Accessed May 30, 2022].

[10] A. Peyton. “CDPQ buys stake in fintech provider FNZ
for £1.65bn.” FinTech Futures, 2018. [Online]. Available:
https://www.fintechfutures.com/2018/10/cdpq-buys-stake-in-fintech-
provider-fnz-for-1-65bn/ [Accessed May 30, 2022].

[11] T. Andreasyan. “Wealthtech FNZ secures investment from Temasek,
acquires IPSI.” FinTech Futures, 2020. [Online]. Available:
https://www.fintechfutures.com/2020/02/wealthtech-fnz-secures-
investment-from-temasek-acquires-ipsi/ [Accessed May 30, 2022].

[12] A. Pugh. “Wealthtech FNZ secures $1.4bn investment.” FinTech
Futures, 2022. [Online]. Available: https://www.fintechfutures.com/
2022/02/wealthtech-fnz-secures-1-4bn-investment/ [Accessed May 30,
2022].

[13] “FNZ raises US$1.4bn in new capital from CPP Investments
and Motive Partners to accelerate transformation in the
global wealth industry.” FNZ, 2022. [Online]. Available:
https://www.fnz.com/news/fnz-raises-usdollar14bn-in-new-
capital-from-cpp-investments-and-motive-partners-to-accelerate-
transformation-in-the-global-wealth-industry [Accessed May 30,
2022].

[14] FNZ. (2021). Understanding the FNZ Propositions [Unpublished On-
line Course].

[15] FNZ. About FNZ Platforms in General - Legacy Vs FNZ One & Propo-
sition Types. (May 05, 2020). Accessed: Jun. 01, 2022. [Unpublished
Online Video].

[16] FNZ. (2021). FNZ One X 101 [Unpublished PowerPoint Slides].
[17] FNZ Global Automation Team. (April 2020). Kratos Test Automation

[Unpublished PowerPoint Slides].
[18] FNZ Product Development. (2020). Introduction to Kratos [Unpub-

lished Online]. [Accessed Jun. 05, 2022].
[19] L. P. Binamungu, S. M. Embury, and N. Konstantinou, “Characterising

the quality of behaviour driven development specifications,” in 21st Int.
Conf. Agile Softw. Develop. (XP 2020), in Agile Processes in Software
Engineering and Extreme Programming, vol. 383, LNBIP, Jun. 2020,
pp. 87–102, doi: 10.1007/978-3-030-49392-9 6.

[20] M. Wynne, A. Hellesøy, and S. Tooke, “Why Cucumber?,” in The Cu-
cumber Book: Behaviour-Driven Development for Testers and Develop-
ers, 2nd ed., J. Carter Ed. Raleigh, NC, USA: Pragmatic Programmers,
LLC, 2017 [Online]. Available: O’Reilly.

[21] P. Bourque and R. E. Fairley, Eds., “Software testing,” in SWEBOK:
Guide to the Software Engineering Body of Knowledge, Version
3.0. Los Alamitos, CA: IEEE Computer Society, 2014 [Online],
pp. 4-1-4-22. Available: https://www.computer.org/education/bodies-
of-knowledge/software-engineering [Accessed Jun. 05, 2022].

[22] B. Garcı́a, M. Gallego, F. Gortázar, and M. Munoz-Organero, “A survey
of the Selenium ecosystem,” Electronics, vol. 9, no. 7, p. 1067, Jun.
2020, doi: 10.3390/electronics9071067.

[23] FNZ Turbine. (2011). Developer Guide to Unit Testing [Unpublished
Online]. [Accessed Jun. 06, 2022].

[24] FNZ Information Security. (2016). Misuse case testing [Unpublished
Online]. [Accessed Jun. 06, 2022].

[25] J. Moon, B. Farnsworth, and R. Smith, “The effectiveness of client-side
JavaScript testing,” in Proc. IEEE/ACM 1st Int. Conf. Automat. Softw.
Test (AST ’20), Oct. 2020, pp. 101-102, doi: 10.1145/3387903.3389314.

[26] W. Mwaura, “Differences between Selenium WebDriver and Cypress,”
in End-To-End Web Testing with Cypress: Explore Techniques for Auto-

mated Frontend Web Testing with Cypress and JavaScript. Birmingham,
U.K.: Pakt Publishing, Limited, 2021 [Online]. Available: O’Reilly.

[27] A. Vuorjoki, “A developer-friendly automated web GUI test strategy,”
M.S.(tech.), Dept. Comp. Sci., Aalto Univ., Espoo, Finland, 2021.
[Online]. Available: https://urn.fi/URN:NBN:fi:aalto-2021121910959.

[28] D. North, “Let your examples flow,” Dan North & Associates Ltd, blog,
Jun. 30, 2008 [Online]. Available: https://dannorth.net/2008/06/30/let-
your-examples-flow/ [Accessed Jun. 06, 2022].

[29] F. Ricca, M. Leotta, and A. Stocco, “Three open problems in the
context of E2E web testing and a vision: NEONATE,” in Advances
in Computers, vol. 113, A. M. Memon Ed. Cambridge, MA, USA:
Academic, 2019, pp. 89-133, doi: 10.1016/bs.adcom.2018.10.005.

[30] L. Badal and D. Grünler, “Automated end-to-end testing: Useful
practice or frustrating time sink?,” Apr. 2021, [Online Unpublished].
Available: https://raw.githubusercontent.com/KTH/devops-
course/2021/contributions/essay/badal-grunler/E2E Testing Essay.pdf
[Accessed Jun. 05, 2022].

[31] M. Cohn, “Quality”, in Succeeding with Agile: Software Development
Using Scrum. Boston, MA: Pearson Education, Inc., 2010 [Online].
Available: O’Reilly.

[32] M. Fowler, “TestPyramid,” martinFowler.com, blog, May 01, 2012 [On-
line]. Available: https://martinfowler.com/bliki/TestPyramid.html [Ac-
cessed: Jun. 07, 2022].

[33] M. Nass, E. Alégroth, and R. Feldt, “Why many challenges with GUI
test automation (will) remain,” Inf. Softw. Technol., vol. 138., p. 106625,
Oct. 2021, doi: 10.1016/j.infsof.2021.106625.

[34] K. Presler-Marshall, E. Horton, S. Heckman, and K. Stolee, “Wait,
wait. No, tell me. Analyzing Selenium configuration effects on test
flakiness,” in 2019 IEEE/ACM 14th Int. Workshop Automat. Softw. Test
(AST), May 2019, pp. 7-13, doi: 10.1109/AST.2019.000-1.

[35] FNZ Product Development. (2021). .Net update [Unpublished Online].
[Accessed Jun. 07, 2022].

[36] “Changelog,” Cypress Documentation, Jun. 2022 [Online]. Available:
https://docs.cypress.io/guides/references/changelog#10-0-0 [Accessed:
Jun. 07, 2022].

https://doi.org/10.1109/iwast.2012.6228988
https://doi.org/10.1007/978-3-030-67731-2_35
https://doi.org/10.1007/978-3-030-67731-2_35
https://www.stuff.co.nz/business/money/107727511/fnz-was-founded-by-kiwi-adrian-durham-in-2003-now-its-worth-335-billion
https://www.stuff.co.nz/business/money/107727511/fnz-was-founded-by-kiwi-adrian-durham-in-2003-now-its-worth-335-billion
https://citywire.com/new-model-adviser/news/face-to-face-adrian-durham-fnz/a353963
https://citywire.com/new-model-adviser/news/face-to-face-adrian-durham-fnz/a353963
https://www.goodreturns.co.nz/article/976494790/fnz-goes-for-34-million.html
https://www.goodreturns.co.nz/article/976494790/fnz-goes-for-34-million.html
https://www.fintechfutures.com/2018/10/cdpq-buys-stake-in-fintech-provider-fnz-for-1-65bn/
https://www.fintechfutures.com/2018/10/cdpq-buys-stake-in-fintech-provider-fnz-for-1-65bn/
https://www.fintechfutures.com/2020/02/wealthtech-fnz-secures-investment-from-temasek-acquires-ipsi/
https://www.fintechfutures.com/2020/02/wealthtech-fnz-secures-investment-from-temasek-acquires-ipsi/
https://www.fintechfutures.com/2022/02/wealthtech-fnz-secures-1-4bn-investment/
https://www.fintechfutures.com/2022/02/wealthtech-fnz-secures-1-4bn-investment/
https://www.fnz.com/news/fnz-raises-usdollar14bn-in-new-capital-from-cpp-investments-and-motive-partners-to-accelerate-transformation-in-the-global-wealth-industry
https://www.fnz.com/news/fnz-raises-usdollar14bn-in-new-capital-from-cpp-investments-and-motive-partners-to-accelerate-transformation-in-the-global-wealth-industry
https://www.fnz.com/news/fnz-raises-usdollar14bn-in-new-capital-from-cpp-investments-and-motive-partners-to-accelerate-transformation-in-the-global-wealth-industry
https://doi.org/10.1007/978-3-030-49392-9_6
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://doi.org/10.3390/electronics9071067
https://doi.org/10.1145/3387903.3389314
https://urn.fi/URN:NBN:fi:aalto-2021121910959
https://dannorth.net/2008/06/30/let-your-examples-flow/
https://dannorth.net/2008/06/30/let-your-examples-flow/
https://doi.org/10.1016/bs.adcom.2018.10.005
https://raw.githubusercontent.com/KTH/devops-course/2021/contributions/essay/badal-grunler/E2E_Testing_Essay.pdf
https://raw.githubusercontent.com/KTH/devops-course/2021/contributions/essay/badal-grunler/E2E_Testing_Essay.pdf
https://martinfowler.com/bliki/TestPyramid.html
https://doi.org/10.1016/j.infsof.2021.106625
https://doi.org/10.1109/AST.2019.000-1
https://docs.cypress.io/guides/references/changelog#10-0-0

	Introduction
	Industry Placement Overview
	FNZ
	Service Platforms
	Test Automation
	Unit and Misuse Testing

	Industry Project
	Cypress
	Project Organisation and Implementation
	Outcomes

	Analysis and Discussion
	Testing Automation
	Kratos Considerations
	Cypress Limitations

	Conclusion
	References

